Sep 20, 2023
Daniel Zingaro and Leo Porter on learning to program with LLMs
Dr. Daniel Zingaro and Dr. Leo Porter are co-authors of the book Learn AI-Assisted Python Programming.
Leo will teach an introductory computer science course this quarter at UCSD using this book. We discuss how tools like GitHub Copilot let people new to programming focus on breaking down problems instead of language syntax.
Dr. Zingaro is an Associate Professor of Computer Science at University of Toronto Mississauga and Dr. Porter is an Associate Professor at University of California San Diego.
This episode was originally posted on Software Engineering Radio. Topics covered:
* Making programming more accessible
* Teaching problem decomposition instead of language syntax
* The importance of reading and testing untrusted generated code
* The rise of throwaway or one-off code
* Concerns about relying on commercial tools
* Rethinking how to assess students Related Links
* Learn AI-Assisted Python Programming
* Leo Porter
* Daniel Zingaro
* GitHub Copilot Transcript
You can help edit this transcript on GitHub.
Note the timestamps and audio for this transcript will not completely match. Intro
[00:00:00] Jeremy: Today I'm talking to Dr. Leo Porter. He's an associate teaching professor of computer science at the University of California San Diego, and he co-founded the computing education research laboratory there.
I'm also joined by Dr. Daniel Zingaro who is an associate teaching professor of computer science at the University of Toronto. And he's also the author of the book, learn to Code by Solving Problems and the Book, Algorithmic Thinking. They are co-authors of the book, learn AI Assisted Python programming.
Leo and Dan, welcome to Software Engineering Radio.
[00:00:37] Leo: Thank you for having us, Jeremy. I really appreciate your podcast, so thanks. Great to be here.
[00:00:41] Dan: Thanks Jeremy. Writing a book for Leo's CS1 class
[00:00:43] Jeremy: The first thing we could start with is, is why this book? And, and why now? How did you decide on like, okay, this is the thing we need to do now.
[00:00:51] Leo: So, uh, this is Dan. Uh, so Dan, um, like really early when LLMs first kind of were coming out and being seen on the scene for programming, uh, he started playing with them, uh, for programming projects. And I think Dan really quickly realized that they'd had this, a big impact on how we teach programming. so he reached out to me, uh, and said, I really need to give em a try.
And, uh, after I played with them for a little while, I had the exact same realization that this is gonna change, uh, how we teach programming, uh, in a pretty dramatic way. So having realized that, having realized that we had to change our, uh, introductory CS1 courses, we knew we needed to do that, but in order to teach that class, we'd have to have a book that we could assign our students that that would go along with the class.
And so we knew we had to change the class, but we also knew we had to have a book for it. And given the, the timeline to write books, we started in the book first. Um, and so that's how it got started. LLMs for Syntax, Humans for breaking down problems
[00:01:45] Dan: I guess we figured out that our course had to change first, before we knew exactly, um, how it had to change. One thing we, um, learned early on was that the kinds of assignments we give in our introductory courses, they're just solved by, by these tools like ChatGPT and copilot.
So, uh, we knew something had to change, and then it is just a matter of figuring out what. And so we spent, um, quite a bit of time with these tools and we started to realize that what's gonna change is the skills that our students need to learn, uh, to be effective using these tools. So like b before these tools, we would spend a lot of time teaching syntax.
Um, and students struggle quite a bit with learning syntax, which I mean, it's very, it's, it's very frustrating, right? Cuz you can't even do anything until you get the syntax right? And you're getting all these errors like missing colons and, you know, mismatched braces and stuff like that. Uh, so it's actually good, that, the LLMs are doing the syntax for the students.
But you know, just because that skill's, uh, not needed as much, uh, doesn't mean that there aren't still skills for students to learn. So instead of syntax, other things become more important. Uh, so for example, uh, Leo and I, realize that reading code is gonna be extremely important even more so than before.
I think if, if that, if that's even possible. Uh, and that's because sometimes you're gonna get back code that just doesn't work. And so we realized that students are gonna need to be able to read, the response that they get to see if the code looks reasonable, or not, right? And then if the code, uh, I is unreasonable, then they need to read more code, uh, and look at other solutions, right, that they get from the, uh, LLM.
Uh, there are other, uh, things they can do as well, like messing around with the prompt and so on. But they're gonna need to be able to read code, uh, throughout the process. And then, so we just kind of kept on using these tools and documenting the skills that students are gonna need.
And we just kinda realized that all the skills students are gonna need are skills we would want to teach anyway. So like, uh, one more example is testing, right? So, students may now not have, uh, an understanding of every last detail of, you know, the Python language like they would before. And so then that makes testing even more important, right?
Than it was they need to verify that the code they're getting is correct. And so they have to be very good at writing test cases. and, and, you know, similar, similar for debugging, we need our students to have strong debugging skills, again, even potentially stronger than before, right? Because if the code isn't working, they need to first determine what the code is doing to be able to fix it. And then I guess one more I'll mention is problem decomposition. And this is a big one. I think this is gonna come up a couple times probably in our talk today, but LLMs struggle when you give them tasks that are too large and students need to know how to break problems down into small components so that, that, LLM can solve each one and, you know, have a good chance of getting it right.
[00:04:56] Leo: Yeah, I, I think, um, kind of to, to piggyback off of that, you, you may be hearing these skills and saying, oh, these are absolutely essential skills. Every software engineer should know, uh, these are being taught right now. Right? Um, and the answer is not really, like these aren't core topics in a lot of introductory CS classes because so much time is spent on syntax.
And so fairly early on when we kind of realized these skills would be so essential, Uh, we got really excited because these are skills we want to teach in our classes, and the LLMs are now giving us the ability to do that more.
[00:05:27] Dan: Mm-hmm.
[00:05:28] Jeremy: I think that's interesting about the syntax comment because you were saying how reading is gonna be more important than ever because you have LLM generating the code. Um, and you need to understand that code that's being generated and understand that it does what it, uh, you think it does.
And so I wonder if when you say you spend less time on syntax, is it because you feel like they're gonna generate this code and they're sort of organically gonna pick up syntax that way versus having to focus on it at the start? I'm just trying to picture what you see changing there.
[00:06:05] Dan: Yeah, Jeremy. So, uh, I, I was, I guess speaking specifically about syntax errors, which don't generally happen when you're using LLMs, and I also agree with you, you need to know what the code is doing, but, um, you can do that without worrying about each specific piece of syntax. Like, um, you're gonna need to know what the keywords do for sure, but, missing, you kno…